ARMA\((p, q) \times (P, Q)_s\)
For example, an ARMA\((0,1) \times (1, 0)_{12}\) is \[ x_t = \Phi x_{t-12} + w_t + \theta w_{t-1} \] where \(\Phi\) and \(\theta\) are parameters to be fitted.
For example, an ARIMA\((0, 1, 1) \times (0, 1, 1)_{12}\) is \[ (1 - B^{12})(1-B)x_t = (1+\Theta B^{12})(1+\theta B) w_t \]
Textbook library
?astsa::sarima
d = cbind(
x = AirPassengers,
lx = log(AirPassengers),
dlx = diff(log(AirPassengers)),
ddlx = diff(diff(log(AirPassengers)), 12)
)
plot(d)
astsa::acf2(d[,"ddlx"], 50)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF -0.34 0.11 -0.20 0.02 0.06 0.03 -0.06 0.00 0.18 -0.08 0.06 -0.39 0.15
## PACF -0.34 -0.01 -0.19 -0.13 0.03 0.03 -0.06 -0.02 0.23 0.04 0.05 -0.34 -0.11
## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
## ACF -0.06 0.15 -0.14 0.07 0.02 -0.01 -0.12 0.04 -0.09 0.22 -0.02 -0.1
## PACF -0.08 -0.02 -0.14 0.03 0.11 -0.01 -0.17 0.13 -0.07 0.14 -0.07 -0.1
## [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
## ACF 0.05 -0.03 0.05 -0.02 -0.05 -0.05 0.20 -0.12 0.08 -0.15 -0.01 0.05
## PACF -0.01 0.04 -0.09 0.05 0.00 -0.10 -0.02 0.01 -0.02 0.02 -0.16 -0.03
## [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
## ACF 0.03 -0.02 -0.03 -0.07 0.10 -0.09 0.03 -0.04 -0.04 0.11 -0.05 0.11
## PACF 0.01 0.05 -0.08 -0.17 0.07 -0.10 -0.06 -0.03 -0.12 -0.01 -0.05 0.09
## [,50]
## ACF -0.02
## PACF 0.13
Fit ARIMA\((0,1,0)\times (0, 1, 0)_{12}\)
astsa::sarima(d[,"lx"], 0, 1, 0, 0, 1, 0, 12)
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
##
## sigma^2 estimated as 0.002086: log likelihood = 218.41, aic = -434.83
##
## $degrees_of_freedom
## [1] 131
##
## $ttable
## Estimate p.value
##
## $AIC
## [1] -3.062183
##
## $AICc
## [1] -3.062183
##
## $BIC
## [1] -3.041935
Fit ARIMA\((0,1,0)\times (0, 1, 1)_{12}\)
astsa::sarima(d[,"lx"], 0, 1, 0, 0, 1, 1, 12)
## initial value -3.086228
## iter 2 value -3.200050
## iter 3 value -3.215680
## iter 4 value -3.216510
## iter 5 value -3.216776
## iter 6 value -3.226344
## iter 7 value -3.227350
## iter 8 value -3.227520
## iter 9 value -3.227646
## iter 10 value -3.227647
## iter 10 value -3.227647
## final value -3.227647
## converged
## initial value -3.218690
## iter 2 value -3.218772
## iter 3 value -3.218779
## iter 3 value -3.218779
## iter 3 value -3.218779
## final value -3.218779
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## sma1
## -0.6021
## s.e. 0.0784
##
## sigma^2 estimated as 0.001536: log likelihood = 235.78, aic = -467.56
##
## $degrees_of_freedom
## [1] 130
##
## $ttable
## Estimate SE t.value p.value
## sma1 -0.6021 0.0784 -7.6773 0
##
## $AIC
## [1] -3.292663
##
## $AICc
## [1] -3.292462
##
## $BIC
## [1] -3.252167
Fit ARIMA\((0,1,1)\times (0, 1, 0)_{12}\)
astsa::sarima(d[,"lx"], 0, 1, 1, 0, 1, 0, 12)
## initial value -3.086228
## iter 2 value -3.150775
## iter 3 value -3.151783
## iter 4 value -3.151788
## iter 4 value -3.151788
## final value -3.151788
## converged
## initial value -3.151684
## iter 2 value -3.151684
## iter 2 value -3.151684
## iter 2 value -3.151684
## final value -3.151684
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ma1
## -0.3870
## s.e. 0.0887
##
## sigma^2 estimated as 0.001828: log likelihood = 226.99, aic = -449.98
##
## $degrees_of_freedom
## [1] 130
##
## $ttable
## Estimate SE t.value p.value
## ma1 -0.387 0.0887 -4.3626 0
##
## $AIC
## [1] -3.168869
##
## $AICc
## [1] -3.168668
##
## $BIC
## [1] -3.128373
Fit ARIMA\((0,1,1)\times (0, 1, 1)_{12}\)
astsa::sarima(d[,"lx"], 0, 1, 1, 0, 1, 1, 12)
## initial value -3.086228
## iter 2 value -3.267980
## iter 3 value -3.279950
## iter 4 value -3.285996
## iter 5 value -3.289332
## iter 6 value -3.289665
## iter 7 value -3.289672
## iter 8 value -3.289676
## iter 8 value -3.289676
## iter 8 value -3.289676
## final value -3.289676
## converged
## initial value -3.286464
## iter 2 value -3.286855
## iter 3 value -3.286872
## iter 4 value -3.286874
## iter 4 value -3.286874
## iter 4 value -3.286874
## final value -3.286874
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ma1 sma1
## -0.4018 -0.5569
## s.e. 0.0896 0.0731
##
## sigma^2 estimated as 0.001348: log likelihood = 244.7, aic = -483.4
##
## $degrees_of_freedom
## [1] 129
##
## $ttable
## Estimate SE t.value p.value
## ma1 -0.4018 0.0896 -4.4825 0
## sma1 -0.5569 0.0731 -7.6190 0
##
## $AIC
## [1] -3.404219
##
## $AICc
## [1] -3.403611
##
## $BIC
## [1] -3.343475
Fit ARIMA\((1, 1, 0)\times (1, 1, 0)_{12}\)
astsa::sarima(d[,"lx"], 1, 1, 0, 1, 1, 0, 12)
## initial value -3.078654
## iter 2 value -3.270484
## iter 3 value -3.271877
## iter 4 value -3.272052
## iter 5 value -3.272052
## iter 5 value -3.272052
## iter 5 value -3.272052
## final value -3.272052
## converged
## initial value -3.253139
## iter 2 value -3.254101
## iter 3 value -3.254125
## iter 4 value -3.254125
## iter 4 value -3.254125
## iter 4 value -3.254125
## final value -3.254125
## converged
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
## Q), period = S), include.mean = !no.constant, transform.pars = trans, fixed = fixed,
## optim.control = list(trace = trc, REPORT = 1, reltol = tol))
##
## Coefficients:
## ar1 sar1
## -0.3745 -0.4637
## s.e. 0.0808 0.0808
##
## sigma^2 estimated as 0.001457: log likelihood = 240.41, aic = -474.82
##
## $degrees_of_freedom
## [1] 129
##
## $ttable
## Estimate SE t.value p.value
## ar1 -0.3745 0.0808 -4.6319 0
## sar1 -0.4637 0.0808 -5.7374 0
##
## $AIC
## [1] -3.343795
##
## $AICc
## [1] -3.343187
##
## $BIC
## [1] -3.283051